Let \(x, y, z\) be three positive reals such that \(xyz \ge 1\). Prove that $$ \frac{x^5\;-\;x^2}{x^5\;+\;y^2\;+\;z^2}\;+\;\frac{y^5\;-\;y^2}{x^2\;+\;y^5\;+\;z^2}\;+\;\frac{z^5\;-\;z^2}{x^2\;+\;y^2\;+\;z^5}\;\geq\;0. $$
Attributes | Олімпіадна |
---|---|
Source | International Mathematical Olympiad |
Year | 2005 |
Number | 3 |
Difficulty | 10.0 |
Themes |