Problem

[554]

Нехай \(p\) і \(q\) - прості числа, причому \(q^3-1\) ділится на \(p\), а \(p-1\) ділится на \(q\). \(\\\)Довести, що \(p=1+q+q^2\).

Solution

Attributes Олімпіадна
Source Респуліканська математична олімпіада (Ukraine)
Year 1967
Number 4
Difficulty 10.0
Grade VIII клас
Themes