Problem

[113]

Given \(n \gt 2\) and reals \(x_1 \le x2 \le \ldots \le x_n\), show that $$ \left({\textstyle\sum_{\displaystyle i,\;j}}\left|x_i-x_j\right|\right)^2\;\leq\;\frac23\left(n^2\;-\;1\right){\textstyle\sum_{i,\;j}}\;\left(x_i\;-\;x_j\right)^2. $$ Show that we have equality iff the sequence is an arithmetic progression.

Solution

Attributes Олімпіадна
Source International Mathematical Olympiad
Year 2003
Number 5
Difficulty 10.0
Themes